DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin
نویسندگان
چکیده
The regulation of chromatin structure in eukaryotic cells involves abundant architectural factors such as high mobility group B (HMGB) proteins. It is not understood how these factors control the interplay between genome accessibility and compaction. In vivo, HMO1 binds the promoter and coding regions of most ribosomal RNA genes, facilitating transcription and possibly stabilizing chromatin in the absence of histones. To understand how HMO1 performs these functions, we combine single molecule stretching and atomic force microscopy (AFM). By stretching HMO1-bound DNA, we demonstrate a hierarchical organization of interactions, in which HMO1 initially compacts DNA on a timescale of seconds, followed by bridge formation and stabilization of DNA loops on a timescale of minutes. AFM experiments demonstrate DNA bridging between strands as well as looping by HMO1. Our results support a model in which HMO1 maintains the stability of nucleosome-free chromatin regions by forming complex and dynamic DNA structures mediated by protein-protein interactions.
منابع مشابه
Hmo1 directs pre-initiation complex assembly to an appropriate site on its target gene promoters by masking a nucleosome-free region
Saccharomyces cerevisiae Hmo1 binds to the promoters of ∼ 70% of ribosomal protein genes (RPGs) at high occupancy, but is observed at lower occupancy on the remaining RPG promoters. In Δhmo1 cells, the transcription start site (TSS) of the Hmo1-enriched RPS5 promoter shifted upstream, while the TSS of the Hmo1-limited RPL10 promoter did not shift. Analyses of chimeric RPS5/RPL10 promoters revea...
متن کاملMolecular mechanisms of ribosomal protein gene coregulation.
The 137 ribosomal protein genes (RPGs) of Saccharomyces provide a model for gene coregulation. We examined the positional and functional organization of their regulators (Rap1 [repressor activator protein 1], Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair resolution using ChIP-exo, as RPGs are coordinately reprogra...
متن کاملChromatin Modification by PSC Occurs at One PSC per Nucleosome and Does Not Require the Acidic Patch of Histone H2A
Chromatin architecture is regulated through both enzymatic and non-enzymatic activities. For example, the Polycomb Group (PcG) proteins maintain developmental gene silencing using an array of chromatin-based mechanisms. The essential Drosophila PcG protein, Posterior Sex Combs (PSC), compacts chromatin and inhibits chromatin remodeling and transcription through a non-enzymatic mechanism involvi...
متن کاملMesoscale Modeling Reveals Hierarchical Looping of Chromatin Fibers Near Gene Regulatory Elements.
While it is well-recognized that chromatin loops play an important role in gene regulation, structural details regarding higher order chromatin loops are only emerging. Here we present a systematic study of restrained chromatin loops ranging from 25 to 427 nucleosomes (fibers of 5-80 Kb DNA in length), mimicking gene elements studied by 3C contact data. We find that hierarchical looping represe...
متن کاملRole of the M-loop and reactive center loop domains in the folding and bridging of nucleosome arrays by MENT.
MENT is a developmentally regulated heterochromatin-associated protein that condenses chromatin in terminally differentiated avian blood cells. Its homology to the serpin protein family suggests that the conserved serpin reactive center loop (RCL) and the unique M-loop are important for its function. To examine the role of these domains, we studied the interaction of wild-type and mutant MENT w...
متن کامل